Quantifying the Role of Population Subdivision in Evolution on Rugged Fitness Landscapes
نویسندگان
چکیده
Natural selection drives populations towards higher fitness, but crossing fitness valleys or plateaus may facilitate progress up a rugged fitness landscape involving epistasis. We investigate quantitatively the effect of subdividing an asexual population on the time it takes to cross a fitness valley or plateau. We focus on a generic and minimal model that includes only population subdivision into equivalent demes connected by global migration, and does not require significant size changes of the demes, environmental heterogeneity or specific geographic structure. We determine the optimal speedup of valley or plateau crossing that can be gained by subdivision, if the process is driven by the deme that crosses fastest. We show that isolated demes have to be in the sequential fixation regime for subdivision to significantly accelerate crossing. Using Markov chain theory, we obtain analytical expressions for the conditions under which optimal speedup is achieved: valley or plateau crossing by the subdivided population is then as fast as that of its fastest deme. We verify our analytical predictions through stochastic simulations. We demonstrate that subdivision can substantially accelerate the crossing of fitness valleys and plateaus in a wide range of parameters extending beyond the optimal window. We study the effect of varying the degree of subdivision of a population, and investigate the trade-off between the magnitude of the optimal speedup and the width of the parameter range over which it occurs. Our results, obtained for fitness valleys and plateaus, also hold for weakly beneficial intermediate mutations. Finally, we extend our work to the case of a population connected by migration to one or several smaller islands. Our results demonstrate that subdivision with migration alone can significantly accelerate the crossing of fitness valleys and plateaus, and shed light onto the quantitative conditions necessary for this to occur.
منابع مشابه
Multidimensional Epistasis and the Transitory Advantage of Sex
Identifying and quantifying the benefits of sex and recombination is a long-standing problem in evolutionary theory. In particular, contradictory claims have been made about the existence of a benefit of recombination on high dimensional fitness landscapes in the presence of sign epistasis. Here we present a comparative numerical study of sexual and asexual evolutionary dynamics of haploids on ...
متن کاملFitness-associated recombination on rugged adaptive landscapes.
A negative correlation between fitness and recombination rates seems to exist in various organisms. In this article we suggest that a correlation of that kind may play an important role in the evolution of complex traits. We study the effects of such fitness-associated recombination (FAR) in a simple two-locus deterministic model, as well as in a multi-loci NK rugged adaptive landscape. In both...
متن کاملEvolution at ‘Sutures’ and ‘Centers’: Recombination Can Aid Adaptation of Spatially Structured Populations on Rugged Fitness Landscapes
Epistatic interactions among genes can give rise to rugged fitness landscapes, in which multiple "peaks" of high-fitness allele combinations are separated by "valleys" of low-fitness genotypes. How populations traverse rugged fitness landscapes is a long-standing question in evolutionary biology. Sexual reproduction may affect how a population moves within a rugged fitness landscape. Sex may ge...
متن کاملNetcrawling - Optimal Evolutionary Search with Neutral Networks
Several studies have demonstrated that in the presence of a high degree of selective neutrality, in particular on fitness landscapes featuring neutral networks, evolution is qualitatively different from that on the more common model of rugged/correlated fitness landscapes often (implicitly) assumed by GA researchers. We characterise evolutionary dynamics on fitness landscapes with neutral netwo...
متن کاملFitness Landscapes Arising from the Sequence-Structure Maps of Biopolymers
Fitness landscapes are an important concept in molecular evolution since evolutionary adaptation as well as in vitro selection of biomolecules can be viewed as a hill-climbing-like process. Global features of landscapes can be described by statistical measures such as correlation functions or the fraction of neutral (equally fit) neighbors. Simple spin-glass-like landscape models borrowed from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2014